翻訳と辞書 |
Cyclic cellular automaton : ウィキペディア英語版 | Cyclic cellular automaton
The cyclic cellular automaton is a cellular automaton rule developed by David Griffeath and studied by several other cellular automaton researchers. In this system, each cell remains unchanged until some neighboring cell has a modular value exactly one unit larger than that of the cell itself, at which point it copies its neighbor's value. One-dimensional cyclic cellular automata can be interpreted as systems of interacting particles, while cyclic cellular automata in higher dimensions exhibit complex spiraling behavior. == Rules ==
As with any cellular automaton, the cyclic cellular automaton consists of a regular grid of cells in one or more dimensions. The cells can take on any of states, ranging from to . The first generation starts out with random states in each of the cells. In each subsequent generation, if a cell has a neighboring cell whose value is the successor of the cell's value, the cell is "consumed" and takes on the succeeding value. (Note that 0 is the successor of ; see also modular arithmetic.) More general forms of this type of rule also include a ''threshold'' parameter, and only allow a cell to be consumed when the number of neighbors with the successor value exceeds this threshold.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Cyclic cellular automaton」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|